GEM Hydro-Kinetic Turbine Rivers and Oceans (High & Low Speed Water Flow)

GEM Hydro-kinetic Turbine is designed for the survival of wildlife, unlike, windmills with its bird and eagle killing design(important to indigenous culture); or solar panels that kill and injure wildlife.

GEM Hydro-Kinetic Turbine (Patent's in Canada, USA, China, Brazil and patent's pending in India) sites are appraised for dimension and generation capability, and is tailored to each site. The Hydro-Kinetic Turbine will be engineered and design according to site requirements for both on grid and off grid connected locations, this includes flow velocity, flow volumes, power and other environmental and water transportation requirements. 

The GEM Turbine operates on pontoons that are anchored in the river or tidal streams. The non-directional turbine attached to the pontoons with a substructure maintains a constant depth of operation while extracting kinetic energy from river or tidal flows in both directions without adjustment.

The GEM Hydro-Kinetic Turbine will be constructed out of the most environmentally sensitive CSA approved durable products available today. The GEM Turbine is designed and constructed for low maintenance and maximum longevity. The GEM Hydro Kinetic Turbine can be located near the consuming markets, due to its low environmental impact with regard to noise pollution, wild life concerns and zero head (no reservoir required). The GEM Turbine is the most efficient and durable hydro-kinetic energy turbine available today as it is constructed of substantial heavy gauge metal with a limited number of moving parts that are designed of durable, non polluting components. Our turbine will require low to zero maintenance for extended periods of time. The GEM Turbine maintains designed rotation regardless of flow direction unique to the industry. The Generators are located above the water for ease of access, maintenance and longevity.
The GEM turbine can be operated in high speed tidal currents such as the Bay of Fundy, Canada (flows in excess of 5.1 m/sec 16.7ft/sec) due to it's durable non-traditional design or in 0.5m/sec water velocity due to its high efficiencies. This unit has the ability to deflect high energy impact while maintaining the highest efficiency, of any turbine due to its non-traditional patented design. A Malaysian Technology Institute achieved 89% efficiency in a controlled flow channel test based on the GEM concept. This efficiency was conducted on a working model therefore it takes into consideration bearing efficiency loss. This efficiency would include bearing loss and any fluctuations in flow. Other turbine efficiencies are determined by theoretical efficiencies and do not include bearing loss and other inefficiencies. This efficiency validates the GEM results.     
GEM has developed the technology to improve this 89% efficiency while maintaining turbine integrity for durability and efficiency. The efficiency is in excess of 89% or approximately 1.5 times the "Betz Limit Theory" ( of 59.33% (maximum for a traditional turbine, such as wind turbines). Our efficiencies have been derived in field tests and confirmed by computer simulation (Autodesk Software). The Malaysian studies confirmed our field tests. During testing and data collection at the Canadian Turbine Test Centre the GEM corporate engineer acquired a horsepower to torque performance ratio on its concept test unit.


The Canadian Government provides a test centre, the Canadian Hydrokinetic Turbine Test Centre, operated by the University of Manitoba Engineering Faculty.  Companies can test their technologies in co-operation with the University Engineers.  The Engineers cannot endorse or promote any of the technologies tested but may give design advice.  GEM Holdings had their Mechanical Engineer on-site, who co-operatively collected site data (i.e. water velocity using University equipment).  The faculty determined that there was no fish mortality or adverse environmental impact.


The GEM Holdings Engineer then processed the data and determined the load, the stall factor and the Point Load position of the GEM Turbine.  This information allowed GEM Holdings to evaluate the theoretical performance of the GEM Turbine including efficiency and confirm the Malaysian University's study of the patented GEM Turbine for efficiency.

            The GEM Turbine

At GEM Holdings we realize that Solar is a green renewable industry and Windmills are also a green renewable industry and with the GEM Turbines tidal and run of the river technology it will now become a viable GREEN industry, all capable of similar power production and excel in tidal stream production. 

The GEM Turbine can produce power surpassing the largest of windmills and solar farms when considering efficiencies and the power output.  The GEM Turbine will have an overall capital cost advantage, an operation and maintenance cost advantage; while maintaining a superior zero wildlife and environmental impact unlike other green technologies that kill birds, bats, insects, fish, and damage forest and farmland.

GEM Holdings over the past 5 years has identified obvious areas in the design that would require innovative solutions, these are: -

Potential Problems                         Solutions

Vane fluctuation due to high and low pressure differential Opposite open and closed vanes linked together by hydraulics that also operate as a break for maintenance. The linking of the vanes allow the high and low pressure to improve performance. 
Massive weight on central drum constructed of heavy gauge metal. Buoyancy with control ballast floatation that controls load on bearings and substructure for longevity.
Massive Weight and force on vanes constructed of heavy gauge metal. Buoyancy with control ballast to reduce bearing load.
Extreme torque on designed vane hinges. Convert vane to a solid state vane at open position transferring torque to the drum at point load and then to the axis reducing load on hinge and bearings.
Adjustment to river or tidal flow surface fluctuation or flow elevation. Use of pontoons to maintain turbine immersion.
Extreme Axle stress from unwanted vertical forces (y and z directions). Substructure roller support system to secure turbine, reduce axle stress and transfer forces to pontoons and then to the anchors. Provide stability during extreme flow conditions.
The rotation variance between high and low tide velocities (as in windmills operating with variable pitch blades).  Patent pending innovation. (Not disclosed)
Debris accommodation and avoidance. Patent pending innovation. (Not disclosed)
Site design to accommodate ice flow in the north. Not disclosed.
The operation of green environmentally friendly non-corrosive bearings. CSA Approved outsourced bearings designed for 500 rpm with 20 year life expectancy but operating at a few rpm in the GEM Turbine.
Tsunami or hurricane.  In the event of a tsunami or hurricane the generators will be dis-engaged (no load) and the slow turning turbine will increase rotation without damage. This will reduce the load on the anchors as they will be able to accommodate the additional unwanted forces.
Fish Survival Deflector that maintains a space between central drum and vanes when closed and aids in the rotation efficiency while providing space for fish survival. No high velocity vanes to injure wildlife.
Change in Tidal Direction Uses identical entrance and exit design including anchors. Rotation remains the same therefore no adjustments are required.

The GEM pontoons will be anchored at both ends of the pontoons in such a manner that the tidal flows and the elevation fluctuations can be accommodated with self adjustment. The pontoons provide the stabilization of the substructure and anchor points to seabed anchors. This allows the turbine to accept all extreme unwanted forces without damage as would occur with any anchored ship. 

We are happy to announce GEM Holdings has addressed and provided solutions to all of these concerns with its innovative patented and patent pending technologies. GEM Holdings Ltd. believes that this turbine is the only hydro-kinetic turbine capable of producing substantial power at a low cost from a single dependable unit but operate well in a farm environment.  

The unique design of the GEM Turbine considers the flow onto the exposed vane to be the high resistance side of the Turbine and the retracted vane to be the low resistance side of the Turbine.  In a 6 vane design (optimum) the width of the vane is equal to the radius of the drum.  The water striking the extended vane provides a force on the vane and also sustains an equal amount of force from the water striking the drum that deflects the water onto the designed vane in the amount of the radius of the drum that is equal to the width of the vane.  These forces in conjunction with the high and low pressures creates the torque on the axis.

Energy cannot be created or destroyed. All of the water flow from the axis to the edge of the vane will be considered to apply an equal force to the vane.  




When evaluating and critiquing the non-traditional GEM Turbine one must take the Horsepower relative to distance and time into consideration in order to calculate the performance of this technology (momentum). The higher learning centre in Malaysia in conjunction with its advanced testing facility realized this aspect in calculating the performance of this unique innovation; arriving at an 89% efficiency. It is very important not to overlook this aspect during performance critiquing. 





GEM Turbine Power Output Calculation


 GEM Prototype Concept Turbine (3 Foot Drum)

            1:        GEM Vane efficiency (EV) = 72% or 0.72 (Validated)        

            2:        GEM Turbine efficiency (E) = 89% or 0.89 (Validated)

            3:         1 (hp) = 550 ft. lbs./sec. or 0.74 Kilowatts

            4:         Water Weight (WW) = 62.5 lbs./cu. ft.

            5:         Water Velocity (WV) = _2.5____ft./sec. or _150___ft./min. (Site Tested)

            6:         Vane Width (VW) = __1.5___ft.

            7:         Vane Height (VH) = __4.0__ft.

            8:         Point Load Circumference = PLC

            9:         Deflector = __0.33_____ft.

           10:        Radius = R = 1.5ft.

           11:        Point Load Circumference (PLC)= Pi{2 x(0.25(VW+deflector)) +(Radius)}= 3.14[2 (0.25x1.83) +1.5)]  = _12.2931___ ft.

           12:        Unit RPM = WV per min. ___150___ft./min. ÷ unit PLC_12.2931__ft. =12.2 at 100% efficiency 

           13:         __11____rpm (Validated by field test) /12.2 = 0.89 or 89% Turbine efficiency. Therefore momentum would be 2.5 x 0.89= 2.225 at 11 rpm [Theoretical Information for prototype design. This excludes fish technology.]

           14:     [Prototype Information for stall calculations field tests]  

Force = 2.5’/sec x 62.5 lbs/ft3 x 3.33’ (vane width +r) x 2.5’ (vane height) = 1300.78

 Force= 1300.78 x 0.72(vane efficiency) = 936.56

 Torque = 936.56 x 2.415 (centre of force in flow direction 90 degrees) = 2261.79

           15:  The Gear Box (1950’/lbs + generator unknown + Turbine Unknown) This appears to be approximately correct for a stall factor calculation. This will be the total load on the turbine at stall.


IMPORTANT - These calculations where used to design a prototype and not the results of a operating turbine. 

This assumption appears to be approximately correct. From this information of the prototype testing, the GEM Engineer determined the accurate point load location which takes into consideration the turbine efficiency but, not the vane efficiency. From the testing of this prototype an accurate point load location was determined for this prototype at 2.143. This will remain consistent to this design and it accounts for the turbine efficiency of 89%.


The theoretical efficiency of the turbine is only important for the design of the prototype turbine and the appropriate load on the prototype to calculate the point load on a working design. The working point load must be used in the calculation of power generation and this point load position will remain constant regardless of dimensions of the similar design.  


This prototype will generate –


A Mass=3.33’x4’x2.5’/sec.x62.5lbs/ft3=2081.25lbs/sec.

B Momentum L = mass for stall calculation. (3.33'x2.5'/sec.x1ft.x 62.5lbs./ft.cubed)= 520lbs./sec. [(3.33'-1.5')/2]=[2.415']x 0.72 vane efficiency =905ft.lbs./sec (per vertical foot) x 2.5' or 2262.5'lbs/sec to begin rotation. The centre of force on the vane prior to rotation will be 2.415', the influence of momentum(L=mvr) and turbine efficiency will determine the turbine point load.   

C The prototype displayed a point load 2.143' from the axis. At 100% efficiency the point load would be 1.9575. The GEM prototype efficiency will be1.9575/2.143=0.913 or 91% efficiency. This validates the Malaysian University calculations of 89%. GEM is using the 89% efficiency due to the Malaysian Studies superior testing facility.

The prototype will operate under load at 11 RPM and produce 20.27 HP or 15.00 kilowatts.

The prototype generated adequate HP but failed to provide the RPM required; as it was designed to be installed in 1.5m/sec or 5ft/sec water flow as was advertised by the CHTTC but was installed in 0.75 m/sec or 2.5’ft/sec water flow, as the higher flow was not available during our testing. A anchor failure by the CHTTC deployment team caused the GEM prototype to float down river destroying the unit therefore further testing was not possible.

Point Load Calculation for GEM Turbine  

  1. The Momentum L at the stall in the prototype has no effect on the rotation of 7RPM. If there is an effect it will be minimized by the average of water force over 2.5 feet of immersion of the turbine.
  2. The point load or PL remains constant once established. The PL will maintain a ratio to the vane force regardless of the turbine size if the vane width is equal to the radius or r.
  3. The prototype under load began to rotate to 7RPM when immersed in 2.5’ or 5x6” of water. Therefore 6” of emersion represents 7RPM/5=1.4RPM every 6” of emersion.
  4. At Stall or 7RPM no momentum L is considered therefore when the turbine is immersed in an additional 6” or 3’ of water the turbine rotated at 10RPM.
  5. The water force represented 7RPM + 1.4RPM or 8.4RPM therefore the momentum represents (10-7) = 3RPM-1.4RPM Therefore 1.4x momentum = 3 or momentum =2.143 x Force Therefore the PL is 2.143 on the turbine from the axis.
  6. The point load will be constant to a turbine of various sizes relative to the prototype design.
  7. The prototype operating turbine would have considered the 89% efficiency in the PL position of 2.143.
  8. The turbine will operate at 89% efficiency and maintain 11 RPM.
  9. The prototype turbine under load operated at a constant RPM even though the turbine was immersed in additional water but maintained a constant RPM under load.
  10. The PL position takes into consideration the normal directional flow of energy as well as the high and low pressure effect(substantial), the direction of flow and turbulence off of the drum or cylinder. Fluctuation water flows with their many variables, therefore the point load location can only be determined off of a prototype with a load as the GEM Engineer identified.  The prototype identified a point load of 2.143ft from axis with the influence of momentum.
  11. The turbine efficiency calculated as having 100% efficiency instead of 89% the prototype would have (vane 1.5'+ 0.33' fish technology)=(1.83x0.25)+1.5 or r=1.9575as the point load. The prototype identified the point load as being 2.143 therefore the efficiency is 1.9575/2.143= 0.91 or 91% efficiency. This validates the Malaysian University study.

Example --This is a small to mid-sized example turbine. (Turbine dimensions are proportionate to prototype design) The durable design will accommodate much larger turbines.

    5’ vane x 12’ high
    10’ drum x 12’ high
    Water Weight- 62.5 lbs/ft3
    Water Velocity- 10’/sec or 600’/min
    Radius of drum-5'
    Fish survival technology-1.1'
    Point Load- 3.33/2.143=11.1/PL

    Mass=(lwh)density (l equals velocity times 1 second therefore l equals 10'/secx1sec=10') 

    Mass= 10’x11.1’x12’x62.5lbs/ft3=83250lbs

    Mass=83250lbs  Measured over one second of continuous flow.

    Velocity =10’/sec
    r=PL=7.14’ (this is calculated with a 1.1 foot fish survival technology.)


    L=Angular Momentum=mvr = Torque
    L=Angular Momentum=Pr= 832500ft.lbs/secx7.14'
    L=Angular Momentum=5,944,050ftlbs/sec = torque on axis calculated at 7.14' or point load position


    RPM=600’/min ÷ (2x7.14'x3.14)= 13.38RPM

    kilowatts=10,807.36HP x 0.74KW/HP=7,997.45 kilowatts or 8.0 Megawatt Turbine. 

    This turbine can access only 95% of the kinetic energy to maintain continuous flow. This turbine will produce 0.95x7.997=7.6Megawatts less the efficiency of the generator.

    This turbine will operate a 6250 KVA or a 5 Megawatt Generator.


    Emissions factor is 1562.4 lbs per megawatt.  The GEM Hydro-kinetic turbine saves approximately (1562.4x24x365x5MW)=68,433,120 lbs per year per 5 Megawatts, or 31,041.26 Metric Tons of green house gases per 5 Megawatt GEM Turbine over a year. Dependent on tidal flows.



    Solar Energy:

    Assuming a solar panel site is installed at $900,000 per Megawatt., and it operates at 10 to 15% efficiency.  Using the highest efficiency of 15%, an installed Megawatt of electrical output would be $6,000,000., per Megawatt of production.  The installation price is a low estimate and the output efficiency is a high estimate. New solar farms near the equator can operate at a 22% efficiency, but a decrease in efficiency occurs as installations move away from the equator.  Solar panels use approximately 4 acres of valuable land per installed megawatt when located close to market.


    The life expectancy appears to be 20 to 25 years, with an 80% production near the end of the life expectancy.  The efficiency when taken over one year could be less than the 15% efficiency, this would increase the installation cost, with a maintenance cost of 1% to 3% of the installation cost per year depending on location and age.  Therefore the capitalization and maintenance of the installation will be between 5% and 8% of the installation costs per annum, or $300,000., to $480,000., per year.  Concentrators of solar rays to increase efficiency are known to kill or injure wildlife such as birds and insects, and are under scrutiny and subject to restrictions in California.

    Three solar farms are approved for installation in southern Alberta, Canada totalling 94 megawatts, costing over 100 million dollars. This will supply power for 20,000 Alberta homes using 7200 kilowatts per year (Alberta Average) (20,000 homes x 7200 kilowatt hours/year) = 144000 megawatt hours per year or (144000 megawatts per year/365days/24hrs)= 16.4 megawatts per hour average. The efficiency will be (100%/94 mega watts x16.4 megawatts) or 17.45% efficiency. The average power production for Alberta is 1292 kilowatt hours/ year on a 1 kilowatt solar panel  therefore one kilowatt solar panel at (1292 kilowatt hours per year/365days per year/24 hours per day)= 0.1475 or 14.75% average efficiency.  The 2019 southern Alberta installation operates at 17.45% efficiency as compared to the Alberta average of 14.75% because it is located further south in the province. The cost of one megawatt of solar installation will be $100,000,000.00/16.4 Megawatts = $6,097,560.97 per Megawatt or approximately $6,000,000.00 per megawatt.

    Decommissioning costs of solar is $200,000.00 per Megawatt of installation.  At a 15% efficiency or ($200,000.00/15%)100= $1,300,000 per Megawatt of production. (Heavy Metals costly to dispose of)

    Windmill Energy:

    Assuming a windmill is installed at $2,000,000., and it operates at 34% to 37% efficiency.  Using the highest efficiency of 37%, an installed Megawatt of electrical output would be approximately $5,400,000., per Megawatt of production.  The installation price is a low estimated installed price, and the output efficiency is a high estimate.   The operating and maintenance costs are extremely high. The maintenance costs fluctuate by age, location and year therefore view government operations and maintenance website for wind turbine operations and maintenance. Due to these high costs the Alberta Government appears to be moving towards solar energy by not renewing some of the wind energy contracts.  


    Wind turbines are known to kill and injure a substantial number of wildlife, such as large and small birds and bats every year.

    Decommissioning of windmills is $200,000.00 for 1 Megawatt of installation.  At 37% efficiency or ($200,000.00/37%)100=$540,000.00 per production Megawatt.

    GEM Turbine:

    The GEM Turbine is installed at an estimated cost of approximately $1,500.000. to $2,000,000., per Megawatt of power output, site dependant. Low maintenance costs are due to the use of a limited number of 20 to 40 year environmentally friendly bearings with non polluting heavy gauge metal (stainless steel or aluminum) components in the GEM Turbine construction. 

    The GEM Turbine will require new bearings every 20 to 25 years as per bearing manufactures claims.  The easily accessed generators will require regular maintenance according to manufacturer specifications as in all generators.  This results in very low operating and maintenance costs as the generators operate above the water and the turbine is easily accessed. The various efficiencies in constructing the GEM Turbine are taken into consideration so the output is 1 megawatt per hour as designed for this competition.

    The GEM Turbine has built-in design protection to accommodate aquatic life and is environmentally friendly, with low noise pollution, slow speed, high torque, durable design.  GEM does not anticipate the mortality of any wildlife, while producing substantial amounts of dependable predictable power due to its high efficiency. The GEM Turbine will produce power 24 hours 7 days a week unlike solar or wind turbines that are dependent on weather conditions.  The environment is paramount in the GEM Turbine design.    

    The capitalization costs on the solar and wind installations per megawatt hour of production will be ($6,000,000/25 years) = $240,000 per year or ($6,000,000/20 years) =$300,000 per year. The GEM Turbine anticipated capitalization costs over 40 to 50 years will be ($2,000,000/40 years) =$50,000 per year or ($2,000,000/50 years) =$40,000 per year per megawatt hour of production with substantially lower operation and maintenance costs and zero to low environmental impact.

    After 50 years of use the decommissioning of the GEM Turbine, if nessesary, there will be a net profit per Megawatt of production. (Salvage of stainless steel or aluminum components) 

    GEM Services Provided

    Project Assessment

    • Project Costing
    • Budget Estimating
    • Project Consulting

    Site Assessment

    • Energy Production 
    • River/Channel Velocities Measurements 
    • Site Location

    Engineering Designs & Service

    • Site Safety Appraisals
    • Site Mooring/ Anchoring
    • Calculating Hydro flows
    • Calculating Hydro Kinetic Turbine Size
    • Power Output
    • Stress & Dynamic Analysis on Models with Software
    • Fluid Flow Analysis Optimization with Software
    • Environmental Impacts 

    Environmental Assessment

    • Wildlife Survival Including Birds & Fish
    • Low Noise Impact
    • No Water Reservoir Required
    • All Components are Environmentally Friendly


    • Site Installation
    • Transportation
    • Site Assembly

    Power Distribution

    • On-Shore grid
    • Off-shore grid
    • Micro grid 

    This is a prototype concept turbine operating at 88.7% efficiency. This turbine was constructed to determine a point load position under a working load. This was determined to be 2.143 feet from the axis.

    The commercial design will not have cables and will operate at a higher efficiency due to other technology construction. The cables where used as a timing device to ensure the opening of the vanes to the 90 degree position. We could not use our current technology of a pre-opener because the point load position was previously unknown.  The commercial locking vane technology can now be incorporated in the commercial design. The mechanical vane linkage located at the bottom of this turbine, will be located at the top of the unit for design and  and enhanced durability.  


    For any clarification please contact GEM Holdings Ltd.